New measurements from ENCORE (as promised) - 3D fields of cloud effective radius for studying aerosol impacts on warm low clouds

Mark Fielding, Christine Chiu, Robin Hogan and Graham Feingold

Why do we need 3D observations of warm low clouds?

- Clouds are rarely stratiform
- 'Soda straw' has limited view
- Cloud structure affects radiative transfer
- Help provide observational constraints for realistic cloud and radiation parameterizations in global circulation models.

How can we observe clouds in 3D?

- Problem: Scanning cloud radar provides cloud structure but not well-constrained droplet size
- Solution: combine scanning cloud radar (Ka/W-band) with spectral (shortwave) zenith radiances
 - Exploit relationship between radiance and optical depth, but also account for 3D effects

Scanning cloud radar

Spectroradiometer

ENCORE novelty

- First cloud retrieval to combine groundbased radar and zenith radiances
- First cloud retrieval to include 3D radiative transfer as a forward model
- First cloud retrieval to use the Iterative Ensemble Kalman Filter as an optimal estimation framework

3D ENCORE (ENsemble ClOud REtrieval) Method

 Zenith radiances mainly constrained by overhead cloud properties -> two step approach

ENCORE - Step 1 (Retrieve within 'Supercolumn')

 Problem: Would like to use 3D radiative transfer as a radiance forward model

Using the Iterative Ensemble Kalman Filter as a Gauss-Newton method

 Typically, Gauss-Newton methods use the error covariance and observation operator matrices explicitly to minimize a cost function:

$$J(\mathbf{x}) = (\mathbf{x} - \mathbf{x}_b)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_b) + (y - H(\mathbf{x}))^T \mathbf{R}^{-1} (y - H(\mathbf{x}))$$

X = 3D field of cloud effective radius, 2D field of number concentration

Y = Zenith Radiance, Radar reflectivity

H = lognormal cloud droplet distribution, 3D radiative transfer

 Solution: Use Iterative Ensemble Kalman Filter. Each ensemble member is individually forward modelled and their gradient in state space is used to minimize cost function

Key points of the ensemble method

Pros

- Ensemble retains error statistics
- Does not require adjoint of forward model
- Easy to implement
- Potentially avoids local minima in non-linear problems by approximating gradient over a spread of points

Cons

Expensive (requires a forward model calculation for each ensemble member at each iteration)

ENCORE – Step 2 (Reflectivity matching)

- Similar to Barker et al. 2011, match columns of radar reflectivity outside the supercolumn (recipients) to columns inside supercolumn (donors).
- Assign donor column's number concentration to recipient column.

Evaluation using trade wind shallow cumulus generated by large eddy simulation

- Retrieval performs well, RMSE in LWP ~20 g m⁻²
- Adding water-absorbing wavelength (e.g., 1640 nm) improves retrieval

Retrieval cross-section along track of radiances

Example SCu

MYES

2NFOV radiance-only retrieval RMSD ~6

Microwave radiometer retrieval RMSD ~20 g m⁻²

Summary

- New method to provide 3D cloud fields in overcast and broken-cloud – key step to understand 3D effects
- Verified using LES shallow cumulus
- Good agreement with independent LWP in stratocumulus case
- Flexible ensemble optimal estimation framework

